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EXTREME VALUES IN THE GI/G/1 QUEUE!

By DoNALD L. IGLEHART
Stanford University

Consider a GI/G/1 queue in which W, is the waiting time of the
nth customer, W(z) is the virtual waiting time at time ¢, and Q(¢) is the
number of customers in the system at time t. We let the extreme values
of these processes be Wyr* = max (W;: 0 < j < n}, WX(t) = sup {W(s):
0 <s=1,and Q%) = sup {Q(s): 0 < s < t}. The asymptotic behavior
of the queue is determined by the traffic intensity p, the ratio of arrival
rate to service rate. When p < 1 and the service time has an exponential
tail, limit theorems are obtained for W,* and W*(z); they grow like
logn or log¢. When p = 1, limit theorems are obtained for W.*, W(#),
and Q*(7); they grow like nt or ¢? if p = 1 and like » or ¢ when ¢ > 1.
For the case p < 1, it is necessary to obtain the tail behavior of the
maximum of a random walk with negative drift before it first enters
the set (— oo, 0].

1. Introduction and summary. Our objective in this paper is to study the
limiting behavior of the maximum waiting time, maximum virtual waiting
time, and the maximum queue length in a GI/G/1 queue for all values of the
traffic intensity. This problem has been essentially solved by Cohen (1968),
(1969) for the M/G/1 and GI/M/1 queues with traffic intensity less than or
equal to one. Limit theorems for the maximum of the’embedded queue length
process in a GI/M/1 queue are obtained in Heyde (1971). Further related
work can be found in Whitt (1971).

In our GI/G/1 queueing system customer number O arrives at time ¢, = 0,
finds a free server, and experiences a service time v,. The nth customer arrives
at time ¢, and experiences a service time v,. Customers are served in their
order of arrival and the server is never idle if customers are waiting. Let the
interarrival times ¢, — ¢, , =u,, n > 1. We assume the two sequences
{v,:n=0}and {u,: n = 1} each consist of independent, identically distributed
(i.i.d.) random variables (rv’s) and are themselves independent. Let the
E{u,} = 27 and E{v,} = p~', where 0 < 1, ¢ < co. The traffic intensity of
this system is o = 2/¢. Each of the three cases p < 1, p =1, and p > 1
induces a different limiting behavior and they shall be considered separately.
The deterministic system in which both the v,’s and u,’s are degenerate is
excluded. We let the waiting time of the nth customer be W, the virtual
waiting time at time ¢ be W(t), and the number of customers in the system at
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time ¢ be Q(f). Now define W, * = max {W;: 0 < j < n}, W*(t) = sup {W(s):
0<s=<1,and O*(t) = sup{Q(s): 0 < s < 1}.

For the case p < 1 we shall assume that v, — u, is nonlattice and that
there exists a positive number 7 such that Efexp[r(v, — u)]} = 1 and
0 < E{(vy — u,) exp [y(v, — #,)]} < oo. The assumption involving 7 is tanta-
mount to requiring the distribution function (df) of v, to have an exponen-
tially decaying tail. (Cohen also needs this assumption in the M/G/1 and
GI/M/1 cases.) This assumption is clearly satisfied if v, has a gamma df or
is bounded above. With this assumption we show that W, *(W*(t)) grows like
log n'/7(log #/7) and obtain precise nondegenerate limit laws. We have no
results for Q*(f) when p < 1. It is known, however, that a nondegenerate
limit theorem for Q*() does not exists for the M/G/1 queue when p < 1; cf.
Cohen (1969, page 602) and Anderson (1970). This fact is a consequence of
the discrete nature of Q*(¢). Tight bounds are available in this case, however,
for the lim sup, ., P{aQ*(¢) — b(t) < x} and the lim inf, ,, P{aQ*(¢) — b(¢) < x},
where a and b(t) are the correct normalizing factors; cf. Cohen (1969, page
602).

The key lemma required to obtain our results for the case p < 1 is one
concerning random walks. Let X, = v, , —u,, k= 1,and S, = X, +--- + X,,
S, = 0. From our independence assumptions we see that {S,:n >0} is a
random walk. We show that the probability that S, exits the interval (0, z]
on the right is asymptotic to be=7¢ as z — co, where b is a constant to be
defined later. This result is perhaps of some independent interest.

The analysis of the cases p = 1 and p > 1 does not require the additional
assumptions made for the case p < 1. Our results in these cases use previous
functional central limit theorems for heavy traffic. We remark in passing
that all our limit theorems could be cast in a functional form; cf. Lamperti
(1964) for the case p < 1 and Iglehart and Whitt (1970) for p > 1.

The organization of this paper is as follows. The random walk result
mentioned above is given in Section 2. Results for the cases p < 1 and p > 1
are contained in Sections 3 and 4 respectively.

2. Arandom walk result. Let {X, :n > 1} be a sequence of i.i.d. rv’s defined
on the probability triple (Q, &, P), where Q = x, Q, and each Q, is a copy
of R, 7 is the completion of the product Borel field (B.F.), P is the com-
pleted product measure constructed from the distribution of X, and {X,:
n = 1} are coordinate functions. Let &, be the completed B.F. generated

by X,, .-+, X,. Anrv a is called optional relative to {X, : n > 1} if it takes on
strictly positive integer values or + co and satisfies the condition {w: a(w) =
nfe #,, n=1,2,...,00, where F. = . Let S,=x and S, =

X,+---+ X,, n = 1. For Borel sets 4 of R' we shall be interested in the
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optional rv’s a,, the first entrance time of the random walk {S,:n = 0} to
the set 4. For ease of notation we let a_, = a and «a . = a(z). We
follow the standard convention of letting P.{-} and E {-} denote the proba-
bility and expectation of the random walk under the condition that
S, =x=0.

Now let the E{X,} = ¢ (assumed to exist), M = sup{S,:k = 0}, and
M, =max{S,: k=0, --.,« — 1}. The following assumption we shall need
here and in later sections.

AsSUMPTION A.  There exists a number y + 0 such that Efer™1} =1,
E{X,er*1} = p, < oo, and X, is nonlattice.

We now are in a position to state the following result due essentially to Feller
(1966, pages 363, 393).

LeMMA 1. If Assumption A holds and —co < p < O (hence 7, p, > 0), then
for x = 0 the
(1) P {M > z} ~ a(x)e™7* as z— oo,
where a(x) = e*[1 — E(erS*)]/rpt, Ey(«).
This Lemma is a consequence of the renewal theorem; cf. Feller (1966, page
349). For lattice X; a corresponding result would hold, but we shall not
pursue that case; cf. Feller (1968, page 331) and Spitzer (1964, page 218). A
brief explanation of how a(x) follows from (6.16) of Feller (1966, page 363)
is in order. The factor e7~ is an easy consequence of starting the random walk
at x rather than 0. The term 1/E(«a)is Feller’s1 — L_; cf. (Chung 1969, page
260). Finally, the term [1 — Eye*«)]/p, is Feller’s 1/p* and is calculated as
follows using his associated random walk ([8] page 388) and Wald’s equation;
cf. Chung (1968, page 128). By definition * = E{°S,, 1} and hence by
Wald p* = p Ef°a .}, where {®S,:n > 0} is the associated random walk
and °a, .., the hitting time of (0, co) for {*S,:n = 0}. Recall that from
random walk theory

1
Ejfa,} = exp { T PlS,e Ac]}
and
s w 1
| — Ejfersas) = exp {_ o L Efersn: 8, ¢ A]} >0,
n

where A is one of the four sets [0, o), (0, o0), (— o0, 0], or (—o0, 0) and
Ey{a} = m < oo; cf. Chung (1968, page 260 and 258). Thus
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1
Ef{*ay,.)} = exp { =1 " o2, = 0]}

= exp {Z:=l% e S, < O]}
=[1 — EferS«}]*.

combining these factors we have p# = p.[1 — Ef{erSe}]
Using Lemma 1 we easily obtain

THEOREM 1. If Assumption A holds and —oco < p < 0, then for x = O the
2) P M. > z} ~ b(x)e 1" as z— oo,
where b(x) = a(0)[e"* — E_{eS}].

Proor. Decomposing the set {M > z} yields

P{M>z}=P{M>z3S,, >zt+ P{M>zS,,<0}.

Using the fact that a(z) is optional, together with the strong Markov property
enjoyed by the random walk, we see that the

PiM >z, 8,, < 0} = §(wyPd{M >z — p}P{S,, cdy}.
Hence
e*P{S,., >z} =e*P{M > z}
— S €V P M > z — ylerV P (S, €dy}.

Next observe that since S, — —oo a.e. (because ¢ < 0), S,,, — S, a.e. and

hence P{S,, € -}= P,{S,ec -}, where — denotes weak convergence. Also
for all ye(— oo, 0], er* ¥ P{M > z — y} can be made arbitrarily close to
a(0) by selecting z large enough. Finally, since e7* is a bounded continuous
function on (— oo, 0], weak convergence yields

3) lim, ., er*P{S,, > z} = a(x) — a(0)E,{erS} .
Since the set {M, > z} = {S,,, > z}, we see that (3) is equivalent to (2).

3. Extreme values when o < 1. We return now to the GI/G/1 queue with
p < 1. Let the probability triple (Q, &, P) = [[.-: (R, %, =), where
R,* =10, o0) X [0, o0), “#.* is the B.F. of R,?, and = is the common
distribution of X, = (v,_,, %,), n = 1. Next define X, =v,_;, —u,, n = 1,

and set S, =0, S, =X, +---+ X,, n=1. As in Section 2 we take
X = Aoy

We shall assume without further mention that Assumption A holds throughout this
section.

In terms of our queue, @ = a' corresponds to the number of customers
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served in the first busy period (b.p.). The concept of the a-shift allows one
to define further rv’s a*, k > 2, which correspond to the number of customers
served in the kth b.p. (Consult Iglehart (1971) for full details on these con-
structions.) Let 8, =0, 8, = a' +---+ a*, and

V= {at, Xy 0o, Xg )

It is well known that the sequence {V,: k = 1} is i.i.d. and that the waiting
time of the jth customer W; = S; — S, on {8, < j < §,}.
Next define the maximum waiting time in the kth b.p. as

M (k) =max {W;: B, < j< Bi}, k=1.

Observe that M (1) = M, of Section 2. Since M (k) is defined in terms of
V,, the sequence {M (k):k = 1} is i.i.d. Let {l(n): n = 0} be the discrete
renewal process associated with the i.i.d. sequence {a*: k = 1}. Then the
maximum of the first n + 1 waiting times, W, *, satisfies.

(4) max{M (k):1 <kZIn)) s W <max{M (k):1 <k < (n)+ 1}.
From Theorem 1 we derive

LemMA 2. If p < 1, then the
(5) lim,_, P{y max,,., M (k) — logbn < x} = A(x), —o0 < x< oo,
where A(x) = exp {—e "} and b = b(0).

Proor. Since the M (k)’s are i.i.d., well-known extreme value theorems
apply; cf. Gnedenko (1943). The method is simply this:

P(max,_,., M. (k) < (x + log bn)/y)
= PH{M.(1) < (x + log bm)/r)
=[1 — bexp[—(x + log bn)] + o(exp [—(x + logn)])]"
using Theorem 1. Letting n — oo, we obtain (5).

From Lemma 2 it is a small step to find a limit theorem for max {M (k):
1 £ k < I(n)} and hence from (4) for W *.

THEOREM 2. If p < 1, then the
lim, ., P{yW,* — log bn < x} = AV™(x), —o0 < X< 0.

Proor. From renewal theory we know that /(n)/n — 1/m as n — co. The
result then follows from Lemma 2, (4), and a result of Berman (1962,
Theorem 3.2).

COROLLARY 1. If p < 1, then
W, *

=1 as n— oo.
log n'/7
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Proor. This follows immediately from Theorem 2 and the continuous
mapping theory; cf. Billingsley (1968, Theorem 5.5). Take k,: R — R as
h.(x) = x/log n.

Next we turn to the virtual waiting time process, {W(f):t = 0}. The
maximum virtual waiting time in the kth b.p. is given by

M+*(k):max{Wj+vj:ABk—l S J< B k=1.

Let M* =sup (S, 4+ v,: k= 0}and M, * =max (S, +v,: k=0, ---, @ — 1}.
Since we have assumed that all v;’s and u;’s are independent, we can write

M* = v, + sup (S, + v, — v,: k = 0}
=V +sup{(v; —u) +---+ (v, —u,): k= 0}
=v,+ M
where v, and M’ are independent and M’ has the same distribution as M.
LemMMA 3. If —oo < E{v, — u} < O, then for x = O the
6) P {M* > z} ~ a*(x)e7* as z-— oo,
where a*(x) = E{er*}a(x).
Proor. Let V be the df of v,. Then the
PAM* >z} = §¢ P{M' + v, > z|v, = v}V(dv)
= §7 PAM > z — v} V(dv)
and
(7) e P{M* > z} = {5 er*" Px{M > z — v}er* V(dv) .
Since Efer"} < co by Assumption 4 and e~V P {M >z — v} — a(x) by
Lemma 1, we can let z— oo in (7), apply the Lebesgue dominated con-

vergence theorem, and obtain (6).
Next we use the method of Theorem 1 to find the tail behavior of M, *.

LeMMA 4. If —oo < E{v, — u,} < 0, then for x = O the
P{M_ * > z} ~ b*(x)e"7* as z— oo,
where b*(x) = E{e"}b(x).

Proor. Decompose {M* > z} and write
{M* >z} ={M*>z,M*>z2 J{M* >z, M. * <z}
={M.*>Z3UM >z, M*<z8,, <0},
Thus the
P{M.* >z} = P,{M* >z} — P{M* >z, M,* <z, 5, < 0}.

Using the strong Markov property again we can write
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P{M* >z, M *< 28, <0}
= Vol M* >z — y}P{M . * <z, 8,, cdy}.

Hence
(8) er*P M. * > z} = er" P,{M* > z}

— Scan @V P {M* >z — yler' P {M * < z, S, €4y} .
Since M_* < M* and M* is finite a.e., M_* is also finite a.e. As remarked
before S,.,, — S, a.e., thus the measure P{M . * <z, S,, € -}=P,S, e}
From here the argument is exactly like that of Theorem 1: let z — oo in (8),

use Lemma 3, and weak convergence.
Using the method employed in Lemma 2 and Theorem 2, we obtain

THEOREM 3. If p < 1, then the
9) lim, ., P{yW*(t) — log b*t < x} = A ™(x),
where b* = b*(0).

The only remark needed here is that the renewal process, {m(¢):t = 0},
associated with the length of the busy cycles, §,, obeys the weak law m()/t —
1/E{¢,} = 2/m. This accounts for the exponent on the right-hand side of (9).
The next result follows immediately using the method of Corollary 1.

COROLLARY 2. If p < 1, then

WHO
log £

as t— oo.

4. Extreme values when o > 1. The results for the case p = 1 have been
obtained previously for much more general systems; see Iglehart and Whitt
(1970, Theorem 9.1). We simply quote them here for sake of completeness.

THEOREM 4. If p = 1l and 0® = *{v, — u}(0 < ¢* < ), then

(a) W,*ont —sup {|E(0]:0 < 1 < 1},
(b) Q*(t)/ptott =sup {|&(1)|: 0t <1}, and
() WH@)por —sup {|§(1): 0= <1},

where {£(t): 0 < t < 1} is a Brownian motion process. The

P{supy,, [€(0)] = %} = 1 — (4/m) T [(—1D¥/(2k + 1)]
X exp {—[7*(2k + 1)*/8x]} .
Now we turn to the case p > 1. We remark that extreme value limit
theorems agree with the ordinary limit theorems since the processes are
growing in this case. The result is

THEOREM 5. If p > 1 and 0 < ¢* < oo, then
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@) [W,* — 2(p — D)n)jont = @,
(b) [W*(t) — (p — V)f]jatt = @, and
(c) [QX(1) — (A — w)t]frtt = @,

where o = [A0*c™{u} + Ac*{vo}]t, 7 = [Fo*{u} + Pa*{v}]t, and O is the
standard normal distribution function.

Proor. (a) Weknow that W, = S, — m,, where m, = min (0, S}, ---, S,).
Hence

(10) S, =W, £8,—m,
where m = inf (0, S, ---). Taking maxima in (10) yields
an§ Wn*éMn_m?

where M, = max (0, S}, ---, S,). Since E{X;} > 0 (because p > 1), m > —oo
a.e. by the strong law. Hence

—0 a.e.
nt

In a similar fashion one can show that |M, — S,|/nt — 0. Thus the limit
behavior of W, * is exactly like that of S,. This completes the proof of (a)
since E{X}} = 270 — 1).

(b) Let {4(z): t = 0} be the renewal process which counts the number of
arrivals in [0, ¢], L(t) = vy + -V -1, and Y(¢#) = L(t) — t. Then the
following representation for W(r) is well known; cf. Reich (1958).

W(t) = Y(t) — inf {Y(c—): 0 <t < £} .

Since o > 1, Y(t) > + oo a.e. by the strong law and using the method
employed in Theorem 5(a) we can show that |[W*(¢) — Y(¢)|/tt — 0. The
central limit theorem for Y(¢) is well known, cf. Hooke (1970, page 636), and
hence completes the proof of (b).

(c) Let S(¢) be the renewal process associated with the sequence {v,,: n = 0}
and set X(¢) = A(t) — S(¢). In ([10] Theorems 2.2 and 3.1) we showed that
sup {|Q(r) — X(7)|: 0 < = < t}/tt — 0 as t — oo. This fact allows us to carry
thru the analysis of (b) with X(¢) playing the role of Y(#). The upshot is that
|Q*(t) — X(¢)|/tt — 0 and the result follows from the central limit theorem
for X(#); cf. [10] Lemma 2.1).
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