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Summary. For  an infinite sequence of independent coin tosses with 
P(Heads)=pe(0 ,1) ,  the longest run of consecutive heads in the first n 
tosses is a natural object of study. We show that the probabilistic behavior 
of the length of the longest pure head run is closely approximated by that 
of the greatest integer function of the maximum of n(1 - p )  i.i.d, exponential 
random variables. These results are extended to the case of the longest head 
run interrupted by k tails. The mean length of this run is shown to be log(n) 
+ k log log(n) + (k + 1)log(1 - p )  - l o g ( k  !) + k + ?:/2 - 1/2 + r I (n) + o(1) where log 
= l o g  t/p, ? =0.577...  is the Euler-Mascheroni constant, 2=in( i /p) ,  and rl(n ) 
is small. The variance is ~2/622+1/12+r2(n)+o(1), where r2(n ) is again 
small. Upper  and lower class results for these run lengths are also obtained 
and extensions discussed. 

1. Introduction 

Consider an infinite sequence of independent coin tosses of a possibly biased 
coin, in which heads appear with probabili ty p and tails appear with probabili- 
ty q. The longest run of consecutive heads in the first n tosses is a natural 
object of study. Several strong results for this and related problems have been 
obtained only rather recently. Erd6s and R6v6sz [-6] employ counting argu- 
ments to provide almost sure results about the growth of the longest head run 
when p = q  = 1/2. Among the curiosities that such runs display is that the upper 
class boundary for unexpectedly long longest head runs grows like ln(n)/2 
+lnln(n)/2, while the lower class boundary for unusually short longest head 
runs grows like ln(n)/2-1nlnln(n)/~,  where 2=In(I /p) .  Erd6s and Rdv6sz also 
extend their results to the case of the longest k-interrupted head run, in which 
up to k tails may appear among a run of heads. 
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Guibas and Odlyzko [8] extend and deepen these results to include arbi- 
trary repetitive patterns of heads and tails. By an impressive use of transform 
techniques, they explicitly compute very tight approximations to the mean and 
variance of the longest pure head run. Denote the longest pure head run in the 
first n tosses by Zo(n ). Guibas and Odlyzko ;show that in the case p =q  = 1/2, 
EZo(n)=(ln(n)+y)/2-3/2+po(n)+o(1 ) where ~=0.577... is the Euler-Mas- 
cheroni constant and 2=1n(2). The quantity po(n), although small (Ip0(n)l <1.6 
x l0 -6 when p=1/2),  possesses no limit. This leads to the intriguing con- 

clusion that the longest head run possesses no limit distribution. An attempt to 
give this phenomenon a probabilistically intuitive explanation was a large 
motivation of our work. 

The key observation in our approach is that the length of any single pure 
head run is distributed as a geometric random variable. Denote by N(n) the 
number of head runs in the first n tosses. The longest head run is then the 
maximum of a random number N(n) of independent geometric random vari- 
ables. Furthermore, N(n) obeys various strong laws of large numbers; indeed it 
is binomial (n, q). In addition, the geometric distribution with parameter q can 
be represented as the integer part of an exponential random variable with 
mean 1/2, where 2=In(I/p).  Anderson [1] uses this relation to investigate the 
maxima of independent integer-valued random variables. Anderson explicitly 
studies the maxima of independent geometric random variables, a situation for 
which there is no limiting distribution. Ferguson [7] provides additional limit 
theory for approximating the distribution of maxima of integer-valued random 
variables with exponentially decaying tails. 

We show below that the behavior of the longest pure head run Zo(n ) is 
very closely approximated by that of [max f'o(J)] where f'o(J) are i.i.d, exponen- 

j<nq 
tial random variables with mean 1/2 and [ ' J  is the greatest integer function. 
Letting W denote a random variable with the standard extreme value distribu- 
tion, i.e. P{W<=t}=exp(-e-*), we can then approximate the distribution of 
max Yo(j" ) by that of W/),+ln(nq)/2. Hence EZo(n ) is almost EW/2+ln(nq)/)b 
j<-nq 
-1 /2 ,  where EW=7, and the term 1/2 is Sheppard's correction for continuity 
(Kendall and Stuart ([9], p. 77)). In the case p=q=l/2 the approximation 
becomes (7 +In(n)) /2-3/2 ,  precisely the leading terms of Guibas and Odlyzko. 
Similarly, applying to W/2 Sheppard's correction for the variance yields an 
approximate variance of ~z/622+ 1/12. This approximation, with much smaller 
higher order terms, is again found in Guibas and Odlyzko. 

Our program is as follows. In Sect. 2, we formalize a representation of coin 
tossing and establish the notation we use throughout. We also generalize to the 
negative binomial case Anderson's representation of geometric random vari- 
ables as integerized exponential random variables. This generalization lets us 
handle k-interrupted head runs. Approximation in distribution is the goal of 
Sect. 3. The key tool is the result of Watson [15] on the maximum of k- 
dependent random variables. This form of dependence is introduced because 
we study k-interrupted head runs, which are essentially moving sums of k +  1 
adjacent i.i.d, geometric random variables. 

In Sects. 4 and 5 we obtain upper and lower class results for k-interrupted 
head runs. These sections are anticipated by Deheuvel's [-5] comprehensive 
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study of multidimensional Erd/Ss-Renyi theorems. Formulating the problem in 
terms of maxima of independent or k-dependent random variables allows us to 
use work of Robbins and Siegmund [11] on the law of the iterated logarithm 
for maxima. O'Brien [103 generalizes their work to dependent variables under 
strong mixing conditions. As does O'Brien, we remark that Barndorff-Nielsen's 
[-2] theorems are similar to Robbins and Siegmund's, though the Robbins and 
Siegmund hypotheses are more convenient for our purposes. Sections 4 and 5, 
especially the statement of our Theorem 4, owe much to O'Brien's work. 

In Sect. 6, we conclude by discussing how our results could be generalized 
to situations of Markov dependence and to behavior of repetitive patterns as 
in Solov'ev [143. 

2. The Fundamental Representation 

Let !/o(1), Y0(2) . . . .  be an i.i.d, sequence of geometric random variables with 
parameter q, so that P{Yo(n)=m} =qpm, for m a non-negative integer and p = l  

- q .  Write S(m)=m+ ~, Yo(J) for m > l  and S(m)=0 for m_<_0. We now realize 
j = l  

independent Bernoulli (p) random variables as X,  = I(,.s(~) fo~ all j > 0}" 
The values {S(m)}, for m>0,  are the locations of T's (tails when X,  =0) in 

the sequence X1X2X3... of H's (heads when X n = l  ) and T's. Write N(n) for 
the binomial (n,q) number of T's observed in the first n tosses. Yo(m) is the 
length of the m-th completed pure head run, which is ended by a T at the S(m)- 
th toss. Note that runs of length 0 are permitted and that the length of the last 
head run in n tosses is n-S(N(n))< Yo(N(n)+ 1). 

We now consider head runs interrupted by kT's. For m>0,  we write Yk(m) 
=S(m+k)-(l+S(m-1)) for the summed lengths of the k + l  pure head runs 
starting with run m and ending with run re+k, plus the k intervening T's 
which separate the k+  1 component pure head runs. Note that Yk(m)--k has a 
negative binomial distribution with parameters (k+ 1, q). We set Yk(m)=0 for 
m_<0. 

Write Mk(n)=max Yk(m) when n>0 ,  and set Mk(n)=0 for n<0.  The length 
m <=n 

of the longest k-interrupted head run in the first n tosses is then denoted Zk(n ) 
=max{Mk(N(n)-k),n-S(N(n)-k)}. Note that our Zk(n) corresponds to the 
Z,(k) of Erd6s and R6v&z. 

It is clear from the construction that the behavior of the longest k-in- 
terrupted head run is strongly related to the behavior of the maxima of k +  1- 
moving sums of independent geometric random variables. We exploit this 
relationship in subsequent sections. 

3. Approximation in Distribution 

Our goal in this section is to obtain results concerning the approximate 
distribution of the longest k-interrupted head run Zk(n). The preceding repre- 
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sentation reduces the problem to a study of the extreme tails of the negative 
binomial distribution. 

Let 2=In(i /p) and write log(n) for logl/p(n ). Define the constants /zk(n ) 
= log(n) + k log log(n) + k log(q/p)- log(k !). We construct below a stationary k- 
dependent sequence of continuously distributed random variables {f'k(J)} such 
that [f'k(J)] = Yk(J) - k  and max { f'k(J)} + k - # ( q n ) ~  W/2 in distribution, where W 

j_-<n 
has a standard extreme value distribution. 

It is therefore plausible that Zk(n ) is well approximated by Mk(N(n)). The 
law of large numbers tells us that N(n) is close to qn. Hence we expect that 
Zk(n ) has a distribution close to that of [W/2+#k(qn)]. We formalize this 
reasoning in Theorem 1. 

In Theorem 2, we emphasize the probabilistic content implicit in the calcu- 
lations of Boyd [3] and of Guibas and Odlyzko [-8]. By examining the 
remainder term in Sheppard's correction, we show that E{Zk(n)} is approxi- 
mately #k(qn)+ 7--1/2, and that Var{Zk(n)} is about 7Z2/(6)L2)q - 1/12. Note that 
E{W} =~ and Var{W} = 7 z 2 / 6 .  

Our construction depends on the following observations, collected in Lem- 
ma 1, below. Note that for integer x, P { Yk(1) - k > x} 
= (k !)- 1 qk+ l(d/dp)k(px+k/(l_p)) = Qk(X)px, where Qk(X) is a k-degree polynomial 
whose leading term is (qx)k/k!. Hence for all x sufficiently large and for all 
integer x>0 ,  there exists a strictly decreasing continuous function Gk(X ) 
= (k !)-a qk+ l(d/dp)k(px+ k/(1 --p)) = Qk(X)p ~. 

Hence, we study the tail behavior of the negative binomial by examining 
the properties of continuous random variables with distribution 1--Gk(" ). 
These properties are summarized in Lemma 1. 

Lemma 1. a) Gk(X)((qx)kpX/k!)- l=  1 +O(1/x). 
b) nGk(~ + #k(n)--k)---,p ~ as n~oe .  
c) I f  Y has distribution 1-Gk( ' ) ,  then 1_~'] has a negative binomial (k+l ,q )  

distribution. 

By construction as in O'Brien [103, we may work in a probability space for 
which Yk(n), X, ,  and Z~(n) are defined as in Sect. 2, and for which there is a k- 
dependent sequence Yk(n) sharing the continuous marginal distribution 1 
--Gk(" ). Further, [~'k(n)J+k= Yk(n). For the case k=0,  corresponding to pure 
head runs, note that f'k(n) are i.i.d, exponential random variables with mean 
1/2. 

By analogy with Sect. 2, we write ~lk(n)=max{Yk(j)+k }. We first use the 
j<-_n 

construction to approximate the longest k-interrupted head run. 

Theorem 1. Let pk(n)= #k(n)--k#k(n)j and let W have a standard extreme value 
distribution. Then, uniformly in t, 

P (Zk(n) -- #k(qn) < t} --P {LW/2 + pk(qn)J -- pk(qn) < t}--*O 
a s  n-- -~  o o  . 

Proof We verify the mixing condition of Watson [153. Let l<_l<_k and let 
U~, U 2, U 3 be independent negative binomial random variables with respective 
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pa ramete r s  (l,q), ( k + l - l , q )  and (l,q). We show that  P{UI+U2>m and U 2 
+ U3 > m l  U1 + U2 > m}--,0 as m - , 0  along the integers. Le t  z = [ log(m)/2J. F r o m  
L e m m a l ,  P{Ul+U2>m}>Clmkp ". In addit ion,  P{UI+U2>m and U 2 
+ U 3 =>m} 

<=P{U2>_m-v}+ ~ PZ{u 1 >=m-n}P{Ua=n } <= Czm-1/2mkp ", 
n = O  

where Ci=Ci (n ,p )  denote  constants.  Hence  Watson ' s  result is appl icable  to 
~k(n)  = k + max  { Yk(J)}" 

j<=n 
Write  cS(n)=nl/ZlogZ(n). Because N(n) is binomial ,  P{[N(n)-nql>c3(n) 

- 1 } ~ 0 .  Hence,  with arbi t rar i ly  large probabi l i ty ,  [Mrk([n q 
-- 6(n)J)J < Zk(n ) <_ Lm~(Lnq + cS(n)J)J. 

We use k-dependence and argue along subsequences of independent  (and so 
exchangeable)  r a n d o m  variables  to obta in:  

P { )Vlk(Ln q -- 6(n)J) = Mk(Lnq + 6(n)J)} ~ 1. 

N o w  Watson ' s  result and  L e m m a  1 yields ~7lk(nq)--#k(nq)-, W/2 in distr ibution.  
Because W has a cont inuous  distr ibution,  P{LMk(nq) j-Lpk(nq)j<t} -P{[W/2 
+pk(nq)J<t}~O uniformly in t. The  theorem follows because Zk(n ) equals 
[Mk(nq) j with probabi l i ty  approach ing  1. 

No te  that  we have not  p roved  tha t  Zk(n ) has a limiting distr ibution.  Tha t  
the failure is not  severe is the impor t  of T h e o r e m  2, in which we app rox ima te  
the mean  and var iance of Zk(n ). This calculat ion is a probabi l is t ic  version of 
the generat ing funct ion calculat ions of Boyd and of Guibas  and Odlyzko.  In  
effect, we obta in  explicit bounds  for the remainder  in Sheppard ' s  correction.  
(See e.g., Kendal l  and Stuart  [9], p. 77.) 

Theorem 2. Let 0 = ~za/2. 7hen 

IE{Zk(n)} --(pk(qn)+ 7/2 -- 1/2)1 < (27Z)- 1 01/2e- 0(1 _ e -0 ) -  2 +o(1)  

and 
[Var {Zk(n)} - ( 7 c 2 / ( 6  Jt 2) q- 1/12)1 < 2(1.1 + 0.7 0) 01/2 e -  ~ -- e - 0)- 3 -t- O (1). 

Proof. As a prel iminary,  we establish the uni form integrabil i ty of the sequence 
{Zk(n ) -#k(nq)} .  Observe  that,  for given t > 0 ,  

P {Zk(n ) - #~(nq) > t} < nP { Yk(1) - #k(nq) > t} < C 1 (1 + t)kp ', 

and that  

P {Zk(n ) - #k(nq) < - t} < exp( -- C 2 n Gk(#k(nq) -- t)) + P {N(n) < nq/2} 

< exp( -- C3p -t) + e x p ( - n q / 8 )  

for posit ive constants  C1, Ca, and  C 3. Also, Zk(n)<n. Hence  {Zk(n)--Yk(nq) } 
and its squares are uniformly integrable. 

N o w  consider the two Bernoull i  functions, bl (X)=X-[XJ-1 /2  and b2(x ) 
= b Z ( x ) - 1 / 1 2 .  Because of T h e o r e m  1 and uni form integrabili ty,  we m a y  evalu- 
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ate E{bl(W/)L + p)}, Var{bl(W/2 + p) }, and Cov{W, bl(W/2 + p) } for constants 2 
and p. 

Expand b 1 and b 2 in Fourier series (Rogosinski [12], pp. 38, 135) and apply 
dominated convergence to express the expectations in terms of the characteris- 
tic function of W, which is F(1 - i t /2) .  The inequality follows from the reflection 
formula for the gamma function, and by the series development of the di- 
gamma function (Carrier et al. [4], pp. 187, 189). 

In the case of fair coin tossing, the bounds are on the order of 1.6 x 10 -6 
for the mean and 6 x 10-s for the variance. See Boyd [3], p. 15, for an analytic 
derivation of very similar bounds. 

4. Unusually Long Longest Head Runs 

In this section, we begin to study the almost sure behavior of k-interrupted 
longest head runs. We present in Theorem 3 a complete characterization of the 
functions which are touched infinitely often (i.o.) by unusually long longest 
head runs. Theorem 3 is proved by ErdSs and R6v6sz for p=1/2.  See their 
Theorem 3* and Theorem 4*. Guibas and Odlyzko study purely repetitive runs 
and give a related result by generating function methods. Our proof is a direct 
application of the work of Robbins and Siegmund [11]. See also Deheuvels 
[5]. 

Theorem3. Let {d(n)} be a non-decreasing sequence of integers. Then 
P{Zk(n)>=d(n ) i.o.} is 0 or 1 as ~dk(n)p d(") is finite or infinite. 

Proof As in Robbins and Siegmund, note that P{/Qk(n)__>d(n)i.o.} 
=P{~(n)>=d(n)-ki .o.}  because {d(n)} is non-decreasing. Recall from Sect. 3 
that the ~'k(n) are k-dependent with common distribution function 1--Gk(" ). 

If 22 Gk(d(n ) - k ) =  0% apply the strong law of large numbers to the binomial 
sequence N(n) to conclude that 

P {Zk(n ) >= d(n) i.o.} = P {Alk(n ) _--> d(L2n/ql) i.o.} 

> P{ Yk(n(k + 1)) => d(L2n(k + 1)/q3) - k  i.o.}. 

The latter probability is 1 by virtue of the Borel-Cantelli lemma for inde- 
pendent events and the monotonicity of {d(n)}. 

Similarly, if Z Gk(d(n ) - k )  is finite, 

P {Zk(n ) >= d(n) i.o.} G n {~k(n) => d(n) i.o.} 

<= n { f-k(n) >= d(n) - k i.o.} = O. 

From Lemma 1, XGk(d(n ) - k ) =  oo if and only if Zd(n)kp a(")= oo. 

5. Unusually Short Longest Head Runs 

We now study the almost sure behavior of unusually short longest k-in- 
terrupted head runs. From the introduction, recall the asymmetry in the 
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behavior of unusually short and unusually long longest head runs, as seen in 
Erd6s and R6v~sz's Theorem 2*. 

In Theorem 4 we show that P{Zk(n)<d(n ) i.o.} is 0 or 1 as determined for 
integer sequences {d(n)} by the finiteness of the series Xd(n)kpd(")exp( 
--nq(qd(n)/p)kpd(")/kl). There are a few regularity conditions on {d(n)} which we 
do not mention yet. 

It is instructive to compare the series criterion to Erd/Ss and R6v~sz's 
Theorems 1" and 2*. They study the integer sequences 

[_{log(n) + k log log(n) - log(k  !) - 1 } - {log in log(n) + 6}/. 

For ~>0, they show that Z~(n) is strictly below this integer sequence infinitely 
often when 6=  1 +e, and finitely often when 6 = - e .  The first term is asym- 
ptotically equivalent to our #k(qn), when p= l /2 .  Using x- l<[xJ<__x ,  the 
second term acts like - logln log(n)+~,  where the - 1  is used to control the 
effect of the greatest integer function. The finiteness of the criterion series is 
therefore controlled by the series s In the practical 
sense that the small degree of indeterminacy in Erd6s and R6v~sz's bounds is 
due to their explicit handling of the greatest integer function, their result is best 
possible. 

A result like Theorem 4 for purely repetitive patterns and for p = l / 2  
appears in Guibas and Odlyzko. Their series criterion is formulated in terms of 
a sequence inverse to {d(n)}. 

The key to our approach is the representation of Sect. 3 and Robbins and 
Siegmund's Theorem 1. ii), of which we use the hypothesis (2.6) in a slightly 
stronger form. The stronger form is due to O'Brien [10]; for the independent 
case, see his Theorem 5. We state without proof the slight variant we need as 
Lemma 2. 

Lemma 2, Let U~, U 2 .. . .  be a stationary k-dependent sequence of random vari- 
ables with continuous distribution function l - H ( ' ) .  Let d(1),d(2),.., be a non- 
decreasing sequence of constants such that lim infnH(d(n))/lnln(n) >0. Then 
P{max Uj < d(n) i.o.} is 0 or 1, according to the finiteness of 2H(d(n))e -"ma(")~. 

j<=n 

The precise conditions characterizing the almost sure behavior of unusually 
short longest head runs are now given in Theorem 4. 

Theorem 4. Let d(n) be a non-decreasing sequence of integers with 
lim infn Gk(d(n))/log log(n) > 0 and lim sup n Gk(d(n))/d(n ) < oo. Then 
P{Zk(n )<d(n) i.o.} is 0 or 1, as determined by whether ~,d(n)kp d(") 
�9 exp(--nq(qd(n)/p)kpd(")/k!) is finite or infinite. 

Proof The Markov inequality applied to m(O=E(e tN(")) implies that P{IN(n) 
- n q l > 6 ( n ) - i  i.o.}=O, where 6(n)=nl/ZlogZ(n). Extend )~rk(" ) to the reals by 
writing lflk(t ) = Mk(l_tJ). Hence, 

P {)Vlk(n q + 6(n)) < d(n) i.o.} <= P {Zk(n ) < d(n) i.o.} 

_<_ P { ~ ( n q -  ~(n)) < d(n) i.o.}. 
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Assume now that the criterion sum is finite. Choose re(j) to be the smallest 
solution to m ( j ) = [ j q - ~ ( j ) j ,  for j sufficiently large. Note that re(j) is non- 
decreasing and so 

P {)~/Ik(n q - ~5(n)) < d(n) i.o.} = P {~rk(j ) < d(m(j)) i.o.}. 

From Lemma 1 and the hypothesis, l im in fGk (d (m( j ) ) - k ) / l og log ( j )  is positive 
because re( j )>jq /2  for all j sufficiently large. 

From Lemma 2, P{~ik(n  q - -6(n))<d(n) i .o .}  =0  if the sum 

Gk(d(m(j) ) - k) exp(-jGk(d(m(j)) - k) 

< e Z 6k(d(n ) -- k) exp [ - (n q + cS(n)) Gk(d(n ) - k)] < oo. 

However, the latter sum is bounded above by the criterion sum of the hy- 
pothesis. 

Similarly, if we assume the criterion sum is infinite, Lemma 2 and the 
identical argument along subsequences establishes the remaining assertion of 
the theorem. 

6. Extensions 

In this section, we briefly indicate possible generalizations of the methods we 
have developed. In the case of finite alphabets with independently chosen 
letters, one can easily extend the results to purely repetitive patterns of a single 
word, or of several words which are permutations of the same letters. The 
analysis then involves finding N(n), the number of starts for the repetitive 
pattern of interest, and finding a sequence of independent or k-dependent 
geometric random variables which continue the base word. The limiting be- 
havior is again integerized extreme value. 

For  example, consider the base word H H T Z ,  in a two-letter alphabet. One 
would expect np2q 2 occurrences of the base word in the first n tosses. Of these, 
approximately n(1 _p2q2)p2q2 begin a run of the base word. The number of 
pure repetitions of the base word is thus geometric, and the N(n) such geomet- 
rics are independent, because a run must end before a new run begins. Hence, 
the distribution of the number of words in the longest complete repetitive 
patterns is approximately distributed as [ ln(n(1-p2q2))/2+ W/2J, where 2 =  
- ln(p2q 2) and W is as before. 

In the symmetric case, where all letters of the alphabet are equally likely, 
one can deal with repetitive patterns with partial repeats adjoined at the ends, 
as in the paper of Guibas and Odlyzko. In this case, the occurrence of a 
pattern establishes a template which is followed for a geometrically distributed 
length. 

For  example, consider a symmetrically distributed two-letter alphabet 
{/-/, T}, and base word B = H H T - E .  The length in letters of the longest B run 
(see Guibas and Odlyzko for definitions) is approximately distributed as 1_4 
+ In ( n2 - 4 ( 1 - 2 - 4 ) ) / 2+W/2J ,  where 4 is the length of the initial word in the 
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run,  a n d  2=1n(2) .  N o t e  h e r e  tha t  the  l e n g t h  of  the  r u n  is m e a s u r e d  in n u m b e r s  

of  l e t t e r s ;  in t he  p r e v i o u s  case, l e n g t h  was  m e a s u r e d  in full  words .  

S i m i l a r  resul t s  a re  poss ib le  for  t he  B* runs  o f  G u i b a s  a n d  O d l y z k o ,  in 

w h i c h  case  t he  c h a n c e  of  s t a r t i ng  a g iven  B* r u n  b a s e d  on  w o r d s  of  l e n g t h  m is 
m2 -(re+l). S o m e  de l i cacy  is r e q u i r e d  in a r g u i n g  ( m +  1) -dependence ,  b e c a u s e  in 

this case  runs  m a y  over l ap .  

T h e  w o r k  of  ErdiSs a n d  R6v6sz  is e x t e n d e d  to M a r k o v  cha ins  by S a m a r o v a  

[13].  O u r  a p p r o a c h  a lso  car r ies  o v e r  for  M a r k o v  d e p e n d e n t  s e q u e n c e s  as wel l  

for p u r e  runs  o f  le t ters  o r  words ,  save  tha t  N(n) n o w  d e p e n d s  o n  the  s t a t ion -  

ary  m e a s u r e  o f  the  chain .  
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